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Fully nonlinear solitary waves in a layered stratified fluid, each layer with a constant
Brunt–Väisälä frequency, are investigated. The stream function satisfies the Helmholtz
equation in each layer and is expressed in terms of singularity distributions. As the
Green function, a combination of Bessel functions of order zero, of the second and
first kind is advocated. Computations performed for two- and three-layer cases show
that the wave speed increases with increasing stratification of the top layer. The
thickness of the pycnocline increases with wave amplitude when the top layer is
homogeneous but decreases when the top layer is stratified. The wave width depends
little on the pycnocline thickness. The fluid velocity may exceed the wave speed in
the upper part of the water column when the top layer is stratified, but is always
smaller than the wave velocity if the top layer is homogeneous. A large vertical
excursion of the individual isopycnals contributes to a small Richardson number Ri.
The smallest value of Ri is observed in the main body of the fluid. Solitary waves of
increasing strength are investigated until the wave-induced fluid velocity equals the
wave speed, or the minimal Ri becomes smaller than one quarter. The results may
support experimental studies of breaking internal solitary waves.

1. Introduction
Fully nonlinear interface models are widely used to study internal solitary waves

of large amplitude. Besides steady wave theories (Amick & Turner 1986; Turner &
Vanden-Broeck 1988; Pullin & Grimshaw 1988; Evans & Ford 1996; Grue et al.
1999; Rus̊as & Grue 2002) unsteady formulations are used to compute the transient
formation of the waves (Eliassen & Fjørtoft 1992; Grue et al. 1997). Solitary waves
in continuously stratified fluids (Tung, Chan & Kubota 1982; Turkington, Eydeland
& Wang 1991; Brown & Christie 1998; Grue et al. 2000) and unsteady waves
(Lamb 1994, 2002) share many of the properties of interfacial waves, but also
exhibit particularities that are less understood. The need for fully nonlinear models
is motivated by observations of large-amplitude wave motion (Huthnance 1989;
Ostrovsky & Stepanyants 1989). Measurements show excursions of the pycnoclines
that exceed the thickness of the upper thinner layer of the ocean. Several of the
recordings have a wave amplitude that may be four to five times the thickness of the
layer above the pycnocline (Stanton & Ostrovsky 1998).

Overturning of internal gravity waves may take place due to convective instability
caused by horizontal advection of density. For a single wave this occurs when
the horizontal particle velocity exceeds the wave velocity (Orlanski & Bryan 1969;
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Delisi & Orlanski 1975). Experimental observations of breaking-induced regions
of recirculation (rotors), which transport a core of mixed fluid, have been made
(Castro, Snyder & Marsh 1983; Grue et al. 2000). Such behaviour is also observed in
computations of large solitary waves that break during the process of shoaling (Lamb
2002). Recently, Lamb (2003) studied how a background shear influences convective
breaking of internal waves. The role of a weak or strong stratification in the top part
of the water column in convective breaking has been less investigated. This represents
a motivation of the present study, where the wave-induced velocity field is evaluated
for various density profiles with a pronounced variation close to the ocean surface.
Conditions are identified where convective breaking is expected. More precisely, we
determine when the computed horizontal fluid velocity becomes equal to the wave
speed in terms of the wave amplitude and stratification.

The motion within the pycnocline is another important issue. Realistic predictions of
the wave-induced velocity shear represent a first step in calculations of the dissipation
and the associated mixing within the pycnocline. A model of these processes and the
resulting thickening of the pycnocline was proposed by Bogucki & Garrett (1993).
They assumed that shear instability would occur when the Richardson number
dropped below 1/4, leading to breaking and mixing of the flow. The wave kinematics
in their model was based on the Korteweg–de Vries equation and the Benjamin–Ono
equation, and the pycnocline was assumed to be thin.

Instability of a steady stratified shear flow is found to be initiated when the
Richardson number locally attains a value that is less than 1/4. Sometimes values less
than 0.2 are needed. Experimental (Scotti & Corcos 1972) and numerical (Hazel 1972;
Winters & D’Asaro 1989) confirmation has been given. Other instability mechanisms,
like the Holmboe instability (Holmboe 1962; Browand & Wang 1972), may occur in
stratified wave motion for any (large) value of the Richardson number if the shear
layer is thick and the pycnocline thin. Parametric instability of time-periodic shear flow
in a stably stratified fluid has been found for arbitrarily large Richardson numbers
(Majda & Shefter 1998). Parametric resonance of periodic waves propagating along
a density gradient has been the subject of several works (Davies & Acrivos 1967;
McEvan & Robinson 1975; Mied 1976; Drazin 1977; Klostermeyer 1982).

We shall here study how the Richardson number Ri varies with the wave amplitude
and the thickness of the pycnocline. This was recently studied by Stastna & Lamb
(2002) including the effect of a background current. They represented the background
density field by a tanh-profile and computed the value of the Richardson number in
large waves as a function of the vertical coordinate. Our predictions indicate that the
pycnocline thickness increases under large waves when the top layer is homogeneous,
but decreases if the top layer is stratified. Another result is that the pycnocline
thickness has relatively little influence on the minimum value of the Richardson
number when this is close to 1/4. We shall identify the curve of minimal Ri = 1/4
as a function of the wave amplitude and stratification. Comparison with a limited
set of laboratory experiments of solitary waves indicates that shear-induced breaking
occurs for Ri somewhat less than 1/4. The present theoretical results may serve as
guidance for a calibration of laboratory experiments on shear instability of solitary
waves.

After our paper was submitted, Voronovich (2003) published a somewhat related
model where two layers, each with constant buoyancy frequency, are separated by an
interface, allowing for a jump in the tangential velocity across the interface. His set of
equations is closed by enforcing a continuous pressure at the interface. Assuming long
waves and weak stratifications, he made comparisons with fully nonlinear interface
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Figure 1. Sketch of the three-layer fluid. The wave amplitude a is defined as the maximum
excursion of the interface Î (and is a positive quantity).

models with homogeneous density layers and with observations from the COPE
experiment (Stanton & Ostrovsky 1998). It has been documented previously that
fully nonlinear interface computations with constant density in each layer provide an
excellent explanation of the data from the COPE experiment, see Grue & Ostrovsky
(2002), Ostrovsky & Grue (2003).

We derive a fully nonlinear mathematical procedure valid for a layered fluid where
each layer has a constant buoyancy frequency. Computations are performed for
two- and three-layer cases. The method represents an alternative to existing methods
assuming a continuous buoyancy frequency (see e.g. Turkington et al. 1991, pp. 106,
117) and is motivated by conditions in nature where the buoyancy frequency is
(almost) constant in an upper layer of the ocean, see e.g. Grue et al. (2000, figure 1).
An additional motivation comes from laboratory studies of internal waves. Calibration
of a layered fluid with uniform stratification in the layers is relatively controllable
and works well for repetitions of the experiment.

We investigate in detail the case where the undisturbed stratification has one value
of the Brunt–Väisälä frequency in the top part of the fluid, N1, another Brunt–Väisälä
frequency in the second layer, N2, and a homogeneous fluid below, see figure 1 for
illustration. The case N1 = N2, i.e. a two-layer fluid with a linear stratification in the
upper layer and a homogeneous fluid in the lower was investigated theoretically and
experimentally by Grue et al. (2000). Both theory and experiments showed that the
wave-induced fluid velocity at the upper surface became equal to the wave velocity
when the wave amplitude was 0.855 times the thickness of the upper stratified layer.
The computations show that u/c could exceed unity, where u is the horizontal
fluid velocity and c is the wave speed, while convective breaking occurred in the
experiments when the experimental u/c was close to one. The experimental u was
always limited by the wave speed c. A broadening of the (experimental) waves was
observed when the limit u/c = 1 was reached. The theoretical results of this work are
generalized here.

The motion within the pycnocline is studied in the case when the undisturbed fluid
has a constant Brunt–Väisälä frequency in the mid-layer. Above is a homogeneous
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or stratified layer which is limited above by a rigid lid. Computations are performed
with both thin and broad pycnoclines.

The two-dimensional velocity field is determined from a stream function. This
satisfies the Helmholtz equation in the layers with non-zero Brunt–Väisälä frequency
and the Laplace equation if the layer is homogeneous. The stream function is expressed
in terms of singularity distributions along the streamlines separating the layers. This
results in a set of integral equations. The linear part of the integral equation operator
is singular. The singular set of equations is inverted using Fourier transform. The
conditioning of the system of equations is invoked by analytical means. It is found
that a combination of Bessel functions of order zero, of the second and first kind,
generally are required in the Green function in order to obtain a complete solution
of the Helmholtz equation. The nonlinear, regular part of the equations is evaluated
in the physical space for subsequent transform.

Following the Introduction, § 2 describes the mathematical model and § 3 the
solution procedure using integral equations. In § 4 the fully nonlinear model is
discussed with respect to weakly nonlinear theories. Section 5 presents computations
of the flow in the pycnocline and in the top part of the water column with emphasis
on potential breaking. Section 6 is a Conclusion.

2. Fully nonlinear theory
A three-layer model of a stably stratified fluid with a linear density profile in each

layer is developed, coded and tested. The mathematical model is generalized to the
case of a continuous density profile with an arbitrary (finite) number of layers, each
with a constant Brunt–Väisälä frequency.

The layers in the three-layer model are referred to by numbers 1, 2 and 3 as
indicated in figure 1. The indexes will be used for the physical parameters in the
individual layers. We introduce a coordinate system O-xy with the horizontal x-axis
on the top level of the fluid and the y-axis pointing upward. There are two interfaces:
one separating layers 1 and 2, and one separating layers 2 and 3. The former we
denote by I , and the latter by Î . A wave amplitude a is defined by the maximal
excursion of the interface Î , and is a positive quantity. The layer thicknesses are h1,
h2, h3. The bottom of layer 3 is located at y = − h1 − h2 − h3. The density profile at
rest is determined by

ρ(y) =




ρ0 − �ρ1

y + h1

h1

− �ρ2, −h1 < y < 0,

ρ0 − �ρ2

y + h1 + h2

h2

, −h1 − h2 < y < −h1,

ρ0 − �ρ3

y + h1 + h2

h3

, −h1 − h2 − h3 < y < −h1 − h2,

(2.1)

where ρ0 denotes the reference density of the fluid and �ρj perturbation
densities. The Brunt–Väisälä frequency within each of the layers is determined by
N 2

j = (�ρjg)/(ρ0hj ), j = 1, 2, 3 (assuming �ρj/ρ0 � 1, see below). As a reference case,
denoted by case (a), we let the density profile be determined by N1 =N2 and N3 = 0. A
second profile (b) is the most general, where the Brunt–Väisälä frequency is different
in each of the layers. Finally, in a case (c), the upper and lower layers have zero
Brunt–Väisälä frequency, i.e. N1 = 0, N3 = 0, while N2 in the second layer is non-zero.
The three different density profiles are visualized in figure 2.
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Figure 2. Models (a), (b) and (c).

Solitary waves of permanent form propagating horizontally with speed c in the fluid
are considered. Viewing the problem in a frame of reference which follows the wave,
the motion becomes steady. We assume, without loss of generality, that the flow
in the far field is a current with speed c directed along the negative x-axis. We
assume that the fluid is incompressible and inviscid. The former means that ∇ · v =0
where v =(U, v) denotes the fluid velocity. Conservation of mass, ∇ · (ρv) = 0, means
that v · ∇ρ =0. A stream function representation of the velocity field is adopted, i.e.
U = ∂Ψ/∂y = −c + ∂ψ/∂y = −c + u and v = −∂Ψ/∂x = −∂ψ/∂x where Ψ denotes the
stream function and ψ the perturbation stream function. A streamline is a density
contour since ρ = ρ(Ψ ) (and ∇ρ · ∇Ψ = 0). The equation governing the perturbation
stream function results from integrating the equation of motion of the fluid (Dubreil-
Jacotin 1932; Long 1958; Yih 1960; Grue et al. 2000). We shall assume here that
�ρj/ρ0 � 1, j = 1, 2, 3, such that the Boussinesq approximation can be made, which
is relevant to oceanic conditions. In this case the motion in the body of the fluid is
governed by

∇2ψ +
N2

c2
ψ = 0, (2.2)

where N 2 is determined in each layer. The stream function ψ is conveniently
represented by the stream functions ψ1, ψ2, ψ3, where the indexes refer to layers
1, 2, 3.

The upper boundary of the top layer is approximated by a horizontal rigid
lid. The internal-wave-induced deflection of a free surface may subsequently be
estimated, see § 5.7. (When the aim is to model internal waves in the ocean, the top
boundary of the mathematical model replaces a free surface. Since the internal wave
speed, with �ρ/ρ0 � 1, is an order of magnitude less than the wave speed of free-
surface waves of comparable wavelength, this supports the application of the rigid
lid approximation there. This is also supported by experimental laboratory studies
where there is no fundamental difference between internal solitary waves propagating
along a pycnocline with the top of the fluid being either a free surface or covered
by polystyrene. A surface tension is known to have an effect on wave breaking when
the horizontal fluid velocity becomes close to the wave phase velocity, see Grue et al.
(2000). The effect of a surface tension is not included in the mathematical model.) The
rigid lid condition also applies at the bottom of the lower layer at y = −h1 − h2 − h3,
i.e.

ψ1 = 0 at y = 0, (2.3)
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ψ3 = 0 at y = −h1 − h2 − h3. (2.4)

Layers 1 and 2 are separated by the streamline with vertical coordinate η − h1, where
η denotes the vertical excursion of I from rest, and η → 0 for x → ±∞. Similarly,
layers 2 and 3 are separated by the streamline with vertical coordinate η̂ − h1 − h2,
where η̂ denotes the vertical excursion of Î from rest, and η̂ → 0 for x → ±∞.

The kinematic boundary condition requires that the normal velocity is continuous,
and equal to zero, at the stationary boundaries between the layers. Since the total
head, H = p + ρgy + ρ 1

2
v2, is constant along each streamline, and since there is no

jump in the density across the boundary between the layers, we may choose the
tangential velocity to also be continuous there. Thereby the pressure is continuous at
the boundaries I and Î , giving

∇(ψ1 − cy) = ∇(ψ2 − cy) at y = η − h1, (2.5)

∇(ψ2 − cy) = ∇(ψ3 − cy) at y = η̂ − h1 − h2. (2.6)

Thus

∂ψ2

∂s
− c

∂η

∂s
= 0 at y = η − h1, (2.7)

∂ψ1

∂s
− c

∂η

∂s
= 0 at y = η − h1, (2.8)

∂ψ1

∂n
=

∂ψ2

∂n
at y = η − h1 (2.9)

∂ψ3

∂s
− c

∂η̂

∂s
= 0 at y = η̂ − h1 − h2, (2.10)

∂ψ2

∂s
− c

∂η̂

∂s
= 0 at y = η̂ − h1 − h2, (2.11)

∂ψ2

∂n
=

∂ψ3

∂n
at y = η̂ − h1 − h2, (2.12)

where s denotes the arc length along the streamlines I and Î and n the normal,
pointing out of layer 2 into layer 1, and pointing out of layer 3 into layer 2. The
formulation is fully nonlinear, where the stream functions ψ1,2,3 and the streamlines
η, η̂ are to be determined.

3. Solution by integral equations
We solve the nonlinear problem (2.2)–(2.12) by means of integral equations. Green

functions G1, G2, G3 in each of the layers are introduced. The relevant Green function
in the upper layer has a pole at (x, y) = (x ′, y ′), and satisfies the Helmholtz equation
(2.2) and the rigid lid condition at y = 0, i.e.

G1(x, y, x ′, y ′) =
π

2
[Z0(α1, K1r) − Z0(α1, K1r1)], (3.1)

where K1 = N1/c, r = [(x − x ′)2 + (y − y ′)]1/2 and r1 = [(x − x ′)2 + (y + y ′)2]1/2. The
function Z0 is defined by

Z0(α, x̂) = Y0(x̂) + αJ0(x̂) (3.2)

where J0 and Y0 denote the Bessel functions of order zero, of the first and second kind,
respectively, and α a real constant to be chosen. The importance of the non-singular
term αJ0(x̂) is discussed below. Z0 behaves like ln(K1r) for K1r → 0. In what follows
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we shall also use the function Z1(α, x̂) = Y1(x̂) + αJ1(x̂). In the cases with N1 = 0 in
the upper layer, the appropriate Green function is G1(x, y, x ′, y ′) = ln(r/r1).

In the second layer, the Green function is

G2(x, y, x ′, y ′) =
π

2
Z0(α2, K2r), (3.3)

where K2 = N2/c. Finally, in layer three we have

G3(x, y, x ′, y ′) =
π

2
(Z0(α3, K3r) − Z0(α3, K3r3)), (3.4)

where K3 = N3/c, r3 = [(x − x ′)2 + (y + y ′ + 2H3)
2]1/2 and H3 = h1 +h2 + h3. If N3 = 0,

G3(x, y, x ′, y ′) = ln(r/r3).
Let the stream functions ψ1, ψ2, ψ3 be determined by singularity distributions:

ψ1 =

∫
I

σ1(s
′)G1(x, y, x ′(s ′), y ′(s ′)) ds ′, (3.5)

ψ2 =

∫
I

σ2(s
′)G2(x, y, x ′(s ′), y ′(s ′)) ds ′ +

∫
Î

σ̂2(s
′)G2(x, y, x ′(s ′), y ′(s ′)) ds ′, (3.6)

ψ3 =

∫
Î

σ3(s
′)G3(x, y, x ′(s ′), y ′(s ′)) ds ′, (3.7)

where σ1(s), σ2(s) σ̂2(s) and σ3(s) denote unknown distributions. The kinematic and
dynamic boundary conditions (2.7)–(2.9) give, at I ,

−
∫

I

σ1(s
′)

∂G1

∂s
ds ′ − c

∂η

∂s
= 0, (3.8)

−
∫

I

σ2(s
′)

∂G2

∂s
ds ′ +

∫
Î

σ̂2(s
′)

∂G2

∂s
ds ′ − c

∂η

∂s
= 0, (3.9)

π[σ1(s) + σ2(s)] +

∫
I

(
σ1(s

′)
∂G1

∂n
− σ2(s

′)
∂G2

∂n

)
ds ′ −

∫
Î

(
σ̂2(s

′)
∂G2

∂n

)
ds ′ = 0, (3.10)

where a bar on the integral sign denotes principal value. Correspondingly, the
kinematic boundary conditions (2.10)–(2.12) give at Î∫

I

σ2(s
′)

∂G2

∂s
ds ′ + −

∫
Î

σ̂2(s
′)

∂G2

∂s
ds ′ − c

∂η̂

∂s
= 0, (3.11)

−
∫

Î

σ3(s
′)

∂G3

∂s
ds ′ − c

∂η̂

∂s
= 0, (3.12)

π[σ̂2(s) + σ3(s)] +

∫
Î

(
σ̂2(s

′)
∂G2

∂n
− σ3(s

′)
∂G3

∂n

)
ds ′ +

∫
I

(
σ2(s

′)
∂G2

∂n

)
ds ′ = 0. (3.13)

A pseudo-spectral method based on a Fourier transform is employed to solve the
mathematical problem. The functions are represented in terms of the horizontal
x-coordinate. The waves are considered here to be non-overhanging, a restriction
that may be removed by using the arc lengths of I and Î as variables. The
Fourier transformed equations and the computational procedure are described in
an Appendix.
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Figure 3. (a) Dispersion curves for the first three modes. (b) Long-wave normalized
eigenfunctions and fully nonlinear normalized ‘mean stream function’ for a/(h1 + h2) =
0.05 (+), 0.5 (�), 1 (· · ·). Stratification case (b) with N1/N2 = 0.5, N3 = 0. h3/(h1 +h2) = 4.13
and h2/h1 = 2.

4. Linear and weakly nonlinear theory
4.1. Linear theory

Linear theory is a reference when the wave amplitude is very small. Assuming for the
moment that the wave train is periodic with wavenumber k and (linear) wave speed
clin, the stream function is of the form ψ(x, y) = a0φ(y) exp(ikx) where a0 denotes
amplitude. The function φ is determined by the eigenvalue problem[

d2

dy2
+

N2

c2
lin

− k2

]
φ = 0, (4.1)

where in addition the following boundary conditions apply: φ(0) = φ(−h1 − h2 −
h3) = 0. The functions φ and dφ/dy are continuous at the two interfaces. Solution
of the Taylor–Goldstein equation (4.1) takes the form Aj cos(K̂jy) + Bj sin(K̂jy) in

each layer, where K̂j =
√

N2
j /c2

lin − k2, j = 1, 2, 3, and Aj and Bj are constants. The

dispersion relation clin(k) is obtained by using the boundary conditions at y =0,
y = −h1, y = −h1 − h2, y = −h1 − h2 − h3, giving

K̂2
2 − T1T2 − T1T3 − T2T3 = 0, Tj = K̂j cot(K̂jhj ). (4.2)

Linear dispersion curves and eigenfunctions are shown in figure 3, which includes
computations of the nonlinear first mode eigenfunction in the long-wave limit (k = 0).
This is obtained from the Fourier transform of the fully nonlinear numerical solution,
for zero wavenumber, i.e. by

∫ ∞
−∞ ψ(x, y) dx. Figure 3(b) shows that the peak of

nonlinear eigenfunction is moved downwards in the fluid, in accordance with the
wave-induced excursion of the streamlines.
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4.2. The linear long-wave speed

The linear long-wave speed, c0, is a reference for the nonlinear computations and
is obtained from (4.2) by letting k → 0. In the special case (a), where N1 = N2

and N3 = 0, the linear long-wave speed is determined by cot(X) + (h1 + h2)/(h3X) = 0
where X = K̂1(h1 +h2) (and k =0). The fastest wave mode is determined for X in the
interval (π/2, π) (Grue et al. 2000). In case (c), with N1 = N3 = 0, (4.2) simplifies to
cot(Y ) − [Yh1/h2 − h2/(h3Y )]/[1 + h1/h3] = 0 where Y = K̂2h2 (and k = 0). The longest
wave mode is obtained for Y in the interval (0, π).

4.3. Weakly nonlinear models

The fully nonlinear computations may be put in the framework of weakly nonlinear
theory, e.g. the Korteweg–de Vries (KdV) equation. In a fixed frame of reference this
is (see e.g. Pelinovsky, Poloukhina & Lamb 2000)

∂a0

∂t
+ c0

∂a0

∂x
+ α0a0

∂a0

∂x
+ β

∂3a0

∂x3
= 0, (4.3)

where a0(x, t) denotes the amplitude function. This is related to the stream function
by ψ(x, y, t) = a0(x, t)φ(y) where φ(y) is the solution of the eigenvalue problem (4.1)
(with k = 0). The coefficients in (4.3) are, in the Boussinesq approximation, obtained
from

α0 =
3

2
c0

∫ 0

−H

φ3
y dy

/ ∫ 0

−H

φ2
y dy, β =

1

2
c0

∫ 0

−H

φ2 dy

/∫ 0

−H

φ2
y dy

where the notation φy = dφ/dy, H = h1 +h2 + h3 is used. The solitary wave solution
of (4.3) propagating with speed c is well known: a0(x − ct) = −â0 sech2((x − ct)/λ),
where c = c0 + â0α0/3 and λ2 = 12β/(α0â0).

Weakly and fully nonlinear computations of the wave speed and the (horizontal)
velocity profile at a crest are compared in figure 4. The fluid is characterized by
N1 =N3 = 0 and h3/(h1 + h2) = 4.13, h2/h1 = 2. There is good agreement between
KdV theory and the fully nonlinear solution when the solitary wave amplitude is
small (a/(h1 + h2) = 0.05). A significant deviation in the velocity profile is observed
for a/(h1 + h2) = 0.5, however. It is evident that the main problem with the weakly
nonlinear theory is the lack of account taken of a finite excursion of the streamlines,
induced by the wave motion, see also the discussion by Ostrovsky & Grue (2003).

We briefly compare weakly and fully nonlinear results for the wave width w1/2 of

solitary waves. The wave width is the average width of the two isolines I and Î ,
where the width of each is defined to be twice the distance from the centre of the
wave at which the vertical displacement is half the maximum value. Fully nonlinear
computations are presented in figure 5(a), for stratified fluid with N1 = N3 = 0, N2 �= 0,
0 < h2/h1 < 1.83. An increasing thickness of the pycnocline somewhat reduces the
non-dimensional wave width w1/2/(h1 + 1

2
h2). This is true for moderate and large

wave amplitudes. For waves of small amplitude there is no such effect, however. The
present computations are also compared with results obtained using the two-layer
interface model by Grue et al. (1999). There is excellent agreement when h2/h1 → 0.

The fully nonlinear computations are also compared with weakly nonlinear KdV
theory and Benjamin–Ono theory. The results in figures 5(b) and 5(c) are obtained for
two-layer fluid with N1 =N3 = 0, N2 = ∞, h2 = 0 and h3/h1 = 20.4, 500, using the two-
layer interface model by Grue et al. (1999). The weakly nonlinear theories work well
only for waves of very small amplitude. Further comparisons with strongly nonlinear
extensions of KdV theory are discussed in Ostrovsky & Grue (2003).
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Figure 4. (a) Excess speed function of the amplitude compared with K-dV solutions for the
two first modes. (b) Horizontal velocity at the crest for fully nonlinear computations (dashed
lines) compared with result from K-dV for the first mode and amplitude a/(h1 +h2) = 0.05
(thin lines) and a/(h1 +h2) = 0.5 (thick lines). Stratification case (c), h3/(h1 + h2) = 4.13 and
h2/h1 = 2.

5. Discussion of fully nonlinear results
5.1. Effect of a thin layer on top of a pycnocline

We investigate first the effect of a thin homogeneous layer on top of a pycnocline
of finite thickness. Computations are performed for a density profile of case (c)
with N1 = N3 = 0 and N2 �= 0, see figure 2. Complementary computations with the
density profile of case (b), with the ratio N1/N2 gradually varying from zero to unity,
and with N3 put to zero in the lower layer, are performed. The computations with
N1/N2 = 1 and N3 = 0 should agree with computations for the density profile of case
(a), providing a check of the results. A depth ratio of h3/(h1 + h2) = 4.13 is chosen,
enabling a close comparison with the theoretical and experimental results given by
Grue et al. (2000). Other depth ratios are also investigated.

The streamlines and vorticity field for a large-amplitude wave with N1 = N3 = 0,
N2 �= 0 are shown in figure 6. The velocity gradient is pronounced within the pycnocline
but is small in the upper and lower layers.

Velocity profiles at the wave crest with N1/N2 gradually increasing from zero to
unity are shown in figure 7. A pronounced velocity gradient is observed only for
a non-zero local Brunt–Väisälä frequency (just below the pycnocline a moderate
velocity gradient is always present). A jump of the Brunt–Väisälä frequency induces
a jump in the velocity gradient. The wave-induced fluid velocity may exceed the
wave speed with N1/N2 = 1, thus inducing a convective breaking of the flow (Grue
et al. 2000). A corresponding result is not found with a top layer with N1 = 0. All
computations performed with the three-layer model with N1 = N3 = 0 and N2 �= 0
exhibit a horizontal velocity that never exceeds c. This is also true if N1/N2 is small
(see figure 7c). The latter result may be obtained analytically by invoking conservation
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of mass in the top layer, assuming a horizontal velocity that is almost uniform in the
vertical direction (when N1 = 0).

In figure 7 we also compare velocity profiles obtained by the three different
methods for the stratifications of cases (a), (b) and (c), respectively. The results
with the different methods are indistinguishable. Convergence is documented by
comparing computations with 128, 256 and 512 collocation points. The present
model predictions with N1/N2 = 1 agree with the two-layer results obtained by Grue
et al. (2000) (figure 8).

5.2. Wave speed and thickness of the pycnocline

All the computations we have performed show that the wave speed increases with
increasing ratio N1/N2 between the Brunt–Väisälä frequencies in the two upper layers
(figures 9 and 10). The ratio N1/N2 is varied in the range [0, 1.4], keeping N2 fixed.

Computations of the pycnocline thickness at the maximal excursion of the wave
show that this always decreases with increasing ratio N1/N2. In the case when the
Brunt–Väisälä frequency in the top layer is zero (N1 = 0), the pycnocline slightly
increases with amplitude. For large-amplitude waves and N1/N2 = 1 the middle layer
always becomes thinner at the wave crest than in the far field (figure 9). This effect
is weaker for a large depth ratio h3/(h1 + h2) than for a small one (figure 10). A
relatively high resolution is required to obtain convergent results (figure 11).

5.3. Horizontal velocity and vorticity

The wave-induced horizontal velocity u relative to the wave speed c is evaluated
at the surface (y = 0). This function shows a monotonic growth with amplitude.
Computations with N1/N2 = 1 and N3 = 0 show that u/c exceeds unity when
a/(h1 + h2) exceeds 0.855 (figure 12). When N1 = N3 = 0 and N2 �= 0, u/c is always
less than unity (figure 12).

Figure 12(a) shows computations of u/c for N1/N2 in the range 0–1.53. All
computations show that u/c exceeds unity when N1/N2 > 0.45, for sufficiently large
amplitude. Beyond the amplitude with u/c = 1 convective breaking is expected
to occur. Convective breaking induced by the motion of a solitary wave was
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Figure 9. Excess speed and pycnocline thickness vs. amplitude. 0 � N1/N2 � 1: (a) h2/h1 =
0.36, (b) h2/h1 = 0.87, (c) h2/h1 = 2. In (d) 1 � N1/N2 � 1.40 and h2/h1 = 2. In all plots
h3/(h1 + h2) = 4.13.

experimentally documented by Grue et al. (2000) when the induced u became equal
to c. In all our computations in which u/c exceeds 1, u/c first equals 1 at the surface.
This indicates that an overturning of the waves will happen first in the upper part of
the water column.

The wave-induced velocity shear represents a source of instability that may
introduce a breaking of the flow. The velocity shear is quantified in terms of the
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local vorticity ω which is evaluated using (2.2). A reference is the local Brunt–
Väisälä frequency, N̂ , which is obtained using the fact that dρ/dΨ is constant along
a streamline, giving ∂ρ/∂y = (dρ/dΨ )∞ (−c + u). This means that the local Brunt–
Väisälä frequency is given by

N̂ = Nj

√
1 − uj/c, j = 1, 2, 3, (5.1)

where Nj denotes the constant Brunt–Väisälä frequency in the far field. The value of

the local Richardson number Ri = N̂2/ω2 indicates the ratio between the stabilizing
effect of a stratification and the destabilizing effect of an unstable velocity profile.
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Using (2.2), (5.1) and further that the stream function is related to the wave-induced
vertical excursion δ of an isopycnal line by ψ/c = δ = y − y∞, we have

Ri =
c(c − uj )

N2
j δ2

, j = 1, 2, 3. (5.2)

A main contribution to a small Ri is thus a large excursion δ of the isopycnal line.
A minimal value of Ri occurs in the main body of the fluid. A small value of c − uj

is less important since the corresponding value of δ is small, making Ri large. This is
typically true close to the top and bottom of the fluid where δ → 0. (In the special case
when c − u1 → 0 for y → 0, we have that c − u1 	 1

2
([∂2u/∂y2]y = 0)y

2 and ψ/c 	 y = δ,
giving Ri < ∞ when y → 0).

A stationary parallel flow is stable when Ri is greater than 1/4. Conversely, the
flow may become unstable due to a shear instability if Ri < 1/4. It is of interest to
identify when Ri > 1/4 for the slowly varying velocity field induced by the solitary
wave. Values of Ri > 1/4 correspond to ω/2N̂ < 1, since ω/2N̂ = 1

2
Ri−1/2.

Figure 12(b) shows computations of ω/2N̂ = 1
2
Nj |δ|/

√
c2 − cu for N1/N2 in the

range 0–1.53. In all examples the quantity grows monotonically with amplitude. The
maximal value of ω/2N̂ exceeds unity in the computations with N1/N2 = 0 and 0.45,
when the wave amplitude is sufficiently large. For values of N1/N2 � 0.77, ω/2N̂ is
always less than 1.

It is of interest to identify wave parameters when u/c and ω/2N̂ are both less than
unity. The wave-induced flow is then expected to be stable (non-breaking). Conversely,
for u/c > 1 or ω/2N̂ > 1 the flow may exhibit breaking. The computations may be
useful for calibration of e.g. breaking internal wave experiments. They may further
be used to interpret observations of breaking internal solitary waves at large scale.

Figure 13(a) plots ω/2N̂ = 1 (corresponding to Ri = 1/4) and u/c =1 as function of
non-dimensional wave amplitude a/(h1 + h2) and N1/N2. The depth ratio h3/(h1 + h2)
is 4.13 and h2/h1 is between 0.36 and 2. Results with different thicknesses of the
pycnocline show that the wave-induced flow is expected to be stable when the non-
dimensional wave amplitude a/(h1 + h2) is up to about unity. A thick pycnocline is
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Figure 13. (a) Lines with ω/2N̂ = 1 (dashed) and u1max/c = 1 (solid) as function of a/(h1 + h2)
and N1/N2, N3 = 0. h2/h1 = 0.36, 0.87, 2. h3/(h1 + h2) = 4.13. Observations of shear instability
(filled diamonds) and no instability (open diamonds) from Grue et al. (1999). Observations
of convective breaking from Grue et al. (2000) (filled circles). Convective breaking provoked
by the effect of a surface tension (Grue et al. 2000) (filled squares). (b) Amplitude at which
ω/2N̂ = 1 vs. h2/h1. N1 = N3 = 0, h3/(h1 + h2) = 4.13.

only slightly more stabilizing than a pycnocline that is moderately thin. A stratified
top layer represents a weak stabilizing effect when N1/N2 is increasing up to about
0.5, but becomes destabilizing for N1/N2 larger than about 0.5. Figure 13(b) plots
ω/2N̂ = 1 for N1 = 0 and h2/h1 in the range from 0.15 to 2. A very thin pycnocline
somewhat reduces the range of stability.

Supplementary computations of ω/2N̂ = 1 and u/c = 1 for deep and shallow lower
layers are shown in figure 14. The amplitude range of a stable flow increases with the
depth of the lower layer. Simulations with a thick (h2/h1 = 2) and moderately thick
(h2/h1 = 0.87) pycnocline show the same results.
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a/(h1 + h2) a/(h1 + 1
2
h2) h2/h1 h1 + 1

2
h2 Obs. Ref.

1.36 1.45 0.07 15 cm Y Case A
1.28 1.45 0.15 7.5 cm N Case B
1.41 1.5 0.07 15 cm Y Case C
1.27 1.35 0.07 15 cm N Fig. 2c
1.15 1.23 0.07 15 cm N Fig. 2c
0.85 0.91 0.07 15 cm N Fig. 2d

Table 1. Experimental observation of shear instability (Y)/no instability (N) by Grue et al.

(1999). N1 = 0, N2 �= 0, N3 = 0. In all cases h2 = 2 cm and (h1 + 1
2
h2)/(h3 + 1

2
h2) = 4.13.

5.4. Comparison with experiments

Grue et al. (1999) performed experiments on internal solitary waves of large amplitude
propagating along a thin pycnocline. Experimental velocity and wave profiles were
compared with fully nonlinear interfacial computations, with good agreement between
experiment and theory. An aspect that was not explained was a breaking of the flow
that took place within the pycnocline, in some of the runs with a very large amplitude.
The breaking was clearly due to a shear instability. Two breaking cases were noted in
Grue et al. (1999, § 4.1). The relative pycnocline thickness in most of the experiments
was h2/h1 	 0.07. In one run it was h2/h1 	 0.15. The Brunt–Väisälä frequencies
were N1 = 0, N2 �= 0, N3 = 0. The data are reproduced in table 1 together with wave
experiments where breaking was not observed. The observations are plotted together
with the computations in figure 13(a). We observe that shear instability occurs for a
significantly larger wave amplitude than indicated by a transition line corresponding
to Ri = 1/4. It is evident that instability occurs for a lower value of Ri than 1/4.
Further precise experiments (and analysis) are required to invoke this transition.

Experimental observations of convective breaking, with u/c ∼ 1, were made by
Grue et al. (2000, § 7). Those experiments were performed with a stratified fluid with
a shallow layer of linear stratification and a deep layer of constant density. In our
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mathematical terminology the conditions were: N1/N2 = 1, N3 = 0, h3/(h1 + h2) = 4.13.
Convective breaking was always observed when large waves induced a fluid velocity
comparable to the wave speed. This occurred when the wave amplitude exceeded
a certain value, i.e. a/(h1 +h2) > 0.855. Observations of convective breaking are
indicated in figure 13 by the filled circles.

Convective breaking was also observed in the experiments by Grue et al. (2000) for
waves with moderate amplitude, with u/c typically exceeding about 0.7. This breaking
disappeared in the experiments when the free surface was covered by polystyrene, or
when the stratified layer was below a homogeneous one, however. It was speculated
that the reason for this latter type of breaking was due to the effect of capillarity at
the free surface. Observations of such breaking are indicated by the filled squares in
figure 13, and appear for values of u/c that are less than unity (and non-dimensional
amplitudes less than 0.855). We note that the effect of capillarity, and other potential
effects of a free surface that may trigger breaking of the waves, do not included in
the present theory.

5.5. Comments on waves with very large amplitude

The limiting form of interfacial waves of very large amplitude was theoretically
investigated by Pullin & Grimshaw (1988) and Rus̊as & Grue (2002), assuming
homogeneous density in the layers. The conclusion from the latter reference is that
interfacial waves of depression always tend to the conjugate flow limit (Amick &
Turner 1986; Turner & Vanden-Broeck 1988), while waves of elevation grow in
amplitude up to a limit that is smaller than the conjugate flow limit, and then have
a mushroom-shaped overhanging profile, provided that the depth ratio is sufficiently
large. These results are observed in computations with a finite density jump at the
interface. In the Boussinesq limit, waves of depression and elevation have the same
appearance, arriving at the conjugate flow limit when the wave amplitude becomes
sufficiently large.

While no experimental mushroom-shaped waves of elevation have been observed, so
far, the limiting form of interfacial waves of depression has partially been confirmed in
experiments by Grue et al. (1999, figure 7e). The experimental profile at the front face
of a wave generated by a very large initial disturbance compared exactly with fully
nonlinear computations in the conjugate flow limit. A similar correspondence was
observed for the measured wave phase velocity and the velocity profile induced by the
wave. Breaking due to pronounced shear instability was observed in the pycnocline,
at the rear of the wave. It can be concluded that the rear of the disturbance could not
reach a steady form until the shear-induced breaking became less dominant or the
wave amplitude was reduced. It is evident from the experiments by Grue et al. (1999)
that (almost perfect) solitary waves can be generated until shear-induced breaking
sets in.

5.6. Computations of recirculation

Solitary waves of mode one with trapped cores were experimentally observed by
Grue et al. (2000). The trapped cores were characterized by intense breaking and by a
horizontal fluid velocity that could only slightly exceed the wave velocity. In contrast
to the experiments, the present calculation method predicts a region of recirculation
when the wave amplitude is increased beyond the value when u = c (see figure 15).
The numerical results are obtained by giving a small increment in the wave speed,
and finding the new field ψ . The computed results differ significantly from the
experimental observations. The horizontal fluid velocity is not bounded by the wave
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Figure 15. Streamlines for a/(h1 + h2) = 0.90 (a) and a/(h1 + h2) = 1.20 (b). N1/N2 = 1,
N3 = 0, h3/(h1 + h2) = 4.13 and h2/h1 = 2.

speed, for example. Computations of large-amplitude solitary waves of mode one with
regions of recirculation have been presented by several authors, see e.g. Tung et al.
(1982) and Derzho & Grimshaw (1997). Recently, Lamb (2003) performed unsteady
computations of solitary waves with trapped cores, with a fluid velocity that only
slightly exceeded the wave velocity. A direct comparison between the experimentally
observed velocity and vorticity fields in trapped cores and computations is yet to be
done.

5.7. Deflection of a free surface: estimate

The deflection of the free surface, due to the passage of an internal wave, assuming
that �ρ/ρ0 � 1, may be estimated by first computing the internal wave motion,
assuming there is a rigid lid on the top of the fluid layer. The wave-induced increase
in the pressure below the rigid lid is given by p̃(x) − p̃∞ = 1

2
(c2 − U 2(x)), since the

head H = p + ρgy + 1
2
ρv2 is constant along the streamline at y = 0, where p̃(x) and p̃∞

denote the pressure at y = 0, at positions x and x = ∞, respectively, and U (x) = ∂Ψ/∂y

at y = 0. An estimate of the free-surface elevation relative to the elevation at infinity
is obtained by equating ρgη̃(x) and p̃(x) − p̃∞, giving η̃(x) = (1/2g)(c2 − U 2(x)).
A maximal elevation is obtained when U (x) = c − u =0 (the onset of convective
breaking). (For c ∼ 1 m s−1 and c = u, the elevation η̃ becomes 5 cm at maximum.)
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6. Conclusion
A fully nonlinear method to compute solitary waves propagating in a continuously

stratified fluid has been derived. The stratification is represented by an arbitrary
(finite) number of layers, each with a constant Brunt–Väisälä frequency. The method
is a complement to two-layer interface models (Amick & Turner 1986; Turner &
Vanden-Broeck 1988; Pullin & Grimshaw 1988; Evans & Ford 1996; Grue et al.
1999) and methods exploiting a continuously differentiable form of the stratification
(Tung et al. 1982; Turkington et al. 1991).

The stream function satisfies the Helmholtz equation in each of the layers. This is
expressed in terms of singularity distributions along the streamlines separating the
layers. For the Green function a combination of Bessel functions of order zero, of the
second and first kind is used, i.e. Y0(x̂) + αJ0(x̂), where α is a real constant. The set of
singular integral equations is inverted by means of a Fourier transform. The resulting
formulae show that the complementary spectra of Y0(x̂) and J0(x̂) are required to
obtain good conditioning of the system of equations. This means that a non-zero
value of α is advocated.

Computations are performed for two- and three-layer cases. The wave speed is found
to increase with amplitude and increasing stratification in the top layer. The thickness
of the pycnocline increases with amplitude when the layer above the pycnocline is
homogeneous. The opposite is true when the top layer is stratified. The wave width
exhibits a very small variation with the pycnocline thickness.

We have also investigated the effect of a stratified top layer on the wave-induced
velocities and the kinematics within the pycnocline. The horizontal velocity generally
increases with decreasing distance from the upper boundary when the stratification
in the top layer is non-zero. The horizontal velocity relative to the wave speed
first exceeds unity in the upper part of the water column. Convective breaking of
experimental waves is thus expected to first occur close to the upper boundary of the
fluid. This has been experimentally confirmed by Grue et al. (2000) for a two-layer
fluid with a linearly stratified upper layer and a homogeneous lower layer. The fluid
velocity is always smaller than the wave velocity in cases with a homogeneous layer
at the top and bottom of the fluid. A convective breaking of the flow is then not
expected.

The Richardson number is expressed by Ri = (c2 − cu)/N2δ2 where c denotes the
wave speed, u the horizontal velocity, N the Brunt–Väisälä frequency of the isopycnal
line in the far field and δ the vertical excursion of the isopycnal line. The main
contribution to a small Ri is a large value of |δ|. The minimal value of Ri is observed
in the main body of the fluid, meaning that a shear instability is expected away from
the horizontal boundaries.

Wave parameters with maximal u/c less than unity and minimal Ri greater than
one quarter are expressed in terms of the wave amplitude and the characteristics of the
stratification. The waves are expected to be non-breaking for u/c < 1 and Ri > 1/4.
The computations may be used to calibrate experiments on breaking internal solitary
waves, which is expected to take place for wave amplitudes that exceed the stable
region indicated by theory. Further experimental investigations of convective breaking
and shear instability caused by internal solitary waves should be undertaken. Breaking
internal waves observed in the ocean, either in shoaling waters or at subsea ridges,
do not yet have a satisfactory interpretation.

This work was funded by the Research Council of Norway through the BmatA-
programme ‘Computational methods for stratified flows involving internal waves’ and
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Appendix. Solution by Fourier transform
A Fourier transform of (3.8)–(3.13) gives A(k)X(k) = F {NL(X)} (k) where Xt =

(F {σ1} , F {σ2} , F {σ̂2} , F {σ3} , F {η} , F {η̂}), and

A(k) =




β
(1)
1 − β

(1)
2 0 0 0 ick 0

π − β
(1)
3 π β

(2)
3 0 0 0

0 β
(2)
1 β

(2)
2 0 ick 0

0 β
(2)
2 β

(2)
1 0 0 ick

0 β
(2)
3 π π − β

(3)
3 0 0

0 0 0 β
(3)
1 − β

(3)
2 0 ick




(A 1)

where F {f } (k) =
∫ ∞

−∞ f (x) exp(−ikx) dx. The system of equations is organized with

the right-hand side F{NL} containing only nonlinear terms. The coefficients β
(j )
i ,

i, j = 1, 2, 3, result from the Fourier transform of the Green function involving
Z1(α, x) = Y1(x) + αJ1(x), i.e.

β
(j )
i (k) =

{
β

(Kj ,hj ,αj )
i for j = 2

β
(Kj ,2hj ,αj )
i for j = 1, 3,

(A 2)

β
(K,h,α)
1 (k) = F

{
π

2
K

Z1(α, K |u|)
|u| u

}
(k),

β
(K,h,α)
2 (k) = F

{
π

2
K

Z1(α, K
√

u2 + h2)√
u2 + h2

u

}
(k),

β
(K,h,α)
3 (k) = F

{
π

2
Kh

Z1(α, K
√

u2 + h2)√
u2 + h2

}
(k).




. (A 3)

By carrying out the transform we obtain

β
(K,h,α)
1 (k) =




−αiπk√
K2 − k2

, |k| < K

iπk√
k2 − K2

, |k| > K,

(A 4)

β
(K,h,α)
2 (k) =




−iπk[sin(h
√

K2 − k2) − α cos(h
√

K2 − k2)]√
K2 − k2

, |k| < K

iπ
k√

k2 − K2
exp(−h

√
k2 − K2), |k| > K,

(A 5)

β
(K,h,α)
3 (k) =




−π cos(h
√

K2 − k2) + απ sin(h
√

K2 − k2), |k| < K

−π exp(−h
√

k2 − K2), |k| > K.
(A 6)
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A.1. Discrete equations

The system of equations A(k)X(k) = F {NL(X)} (k) is solved for a prescribed wave
celerity c. The relation between c and the wave amplitude a is subsequently computed.
The wave amplitude is defined as the maximal negative displacement of the transition
line Î between the second and third layer, i.e |η̂(0)|. A wave tank of length L is
discretized with n = 2n̂ collocation points evenly spaced, n̂ an integer. A corresponding
set of wavenumbers are kj = 2πj/L, j = 1 − n/2, . . . , n/2. The right-hand side of the
discrete version of the equation involves all discrete wavenumbers, which means that
the full block diagonal coefficient matrix has to be inverted. This matrix is denoted
by A.

The unknown functions σ1, σ2, σ̂2, σ3, η and η̂ are real and symmetric with respect
to the vertical centreline of the wave at x = 0. Exploiting the symmetry, the resolution
may be limited to the positive wavenumbers, leading to a system with 6n/2 unknowns
in the most general cases (b) and (c). In the far end of the wave tank we put the
four unknown distributions and the two elevations are set to zero. This gives in the
wavenumber space the following relations: F {g} (0) + 2

∑n/2
j=1 F {g} (j ) cos(ijL/2) =

0, which are directly included in the global sparse matrix A.
All the integrations are performed by the trapezoid rule. Derivatives are directly

computed from their discrete Fourier transform. For practical computations we use
n = 128 and n = 256. Convergence tests are run with n = 512. The tank length is
chosen to be around ten times its height. An iterative scheme is used to find X for
a prescribed celerity (initializing the procedure is explained below). The numbers of
iterations needed to iterate the solution from c to c + �(c/c0)c0 is typically around
20 for �(c/c0) = 0.015 with a maximum error ε =

∑
k |AX − F {NL(X)} | < 10−7.

A.2. Resolution

An iterative scheme is used to solve the set of discrete equations. Starting from a
solution with a prescribed celerity c, the solution is found using the Newton–Raphson
method. An initial guess X0 is calculated from weakly nonlinear Korteweg–de Vries
theory, giving σ 0

1 ,σ 0
3 ,η0,η̂0, and from the set of equations, σ 0

2 ,σ̂ 0
2 . The Jacobian matrix

of the system is estimated by means of first-order finite difference. Its evaluation
requires 7n nonlinear integral evaluations. The Jacobian is not re-computed at each
step and its evaluation is done on a coarse grid with an adaptative step size.

A.3. The condition number of the matrix A

We use the Green function Z0(α, x̂) = Y0(x̂) + αJ0(x̂) where α is a (real) constant to
be chosen. For the two-layer case (a) the Green function Z0(α = 0, x̂) = Y0(x̂) was
found to be satisfactory (Grue et al. 2000). An improved condition number of the set
of equations is obtained here by a careful choice of a non-zero α, however. For the
stratifications in cases (b) and (c), the matrix A becomes almost singular for values
of α close to zero as indicated by a very small condition number of the matrix. The
mathematical reason is that the function β1(k)(K,h,α) in (A 4) vanishes in the range
|k| < K when α = 0. This means that the spectral components of the Green function
become zero for |k| < K when α = 0. The condition number of the set of equations
is improved with an α that is non-zero. In the computations we choose α = −1 in
the two-layer configuration and α = −1.2 for the three-layer case. The computations
for the case N1 = N2 confirm the computations by Grue et al. (2000), using another
computational strategy with α = 0, see figure 8.
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